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Comments on the paper by Zinoviev and 
Bies “On acoustic radiation by a rigid object 

in a fluid flow”

F. Farassat, NASA Langley Research Center, Hampton, Virginia, U.S.A.

In a recent paper by Zinoviev and Bies in this Journal [1], the authors have 
claimed that the well-known theoretical results of Curle [2] and Ffowcs Will-
iams and Hawkings (FW-H) [3] are incorrect. This claim is categorically 
refuted below and serious errors in [1] are pointed out. 

1.0  The Main Result of The Paper, its Origin and Relation to 
the Curle and the Ffowcs Williams-Hawkings Equation

The authors start with a Kirchhoff-like formula for the density perturbation 
, eq. (4), which they present without derivation or a reference. From 

the discussion in Subsection 3.1, one concludes that the authors intend to 
solve the radiation problem in the frame fixed to the solid surface . Because 
of the fact that no Doppler factors are present in the denominators of the inte-
grands of this equation, we conclude that the authors assume that the surface 

 is stationary with respect to the undisturbed medium. Since the authors’ 
two examples are for stationary solid objects, this assumption seems appro-
priate. The authors then manipulate eq. (4) algebraically to get their main 
result which is eq. (34). We have some objection about the fact that the 
authors have not clearly indicated the dependence of the integrands of eqs. 
(4), (34) and of all the other integrals on the retarded time. We will elaborate 
on this matter under another heading below.

Our first comment is on the origin of eq. (4). This equation is simply the sum 
of the solution of the Lighthill jet noise equation and the Kirchhoff formula 
for the density perturbations. The derivation of the Kirchhoff formula for the 
the acoustic density or pressure perturbations is based on the assumption that 
these variables satisfy the linear wave equation everywhere [4]. There is no 
mathematical or physical justifications from the first principles for the cor-
rectness of eq. (4) for the general flow situations where the Curle formula or 
the FW-H equation is valid. In fact when the correct procedures are followed, 
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one is invariably led to the FW-H equation. From reference [5], slide 85, one 
can actually write down the inhomogeneous source terms of the wave equa-
tion for the acoustic density perturbation whose formal solution satisfies eq. 
(4) of the authors. For completeness we give this wave equation below:

    (1)

where  defines the surface  with the assumption that  on 

this surface which can always be satisfied. Here  is the unit normal vector 

to  pointing into the fluid. Note that the unit normal vector  in Zinoviev 
and Bies points into the surface S. We are using the established convention in 
the aeroacoustic literature for the direction of the unit normal to the surface S. 
The symbol  stands for the Dirac delta function with the support on the 

surface . The uniform speed of sound in the undisturbed medium is 

denoted as . 

To carry the analysis further, we replace  everywhere in eq. (1) by the 

acoustic pressure . The resulting equation is:

      (2)

We now recognize two conditions depending on whether the surface 
 is stationary or in motion with small amplitude.

1. The surface S is rigid and stationary. In this case we have the boundary 
condition . Then eq. (2) becomes:

      (3)

This equation is simply the linearized governing equation of the Curle for-
mula.
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2. The surface S is rigid and is in motion with small amplitude. Then the 
momentum equation gives 

          (4)

where  is the local normal velocity of the surface S. Substituting this in eq. 

(2) gives the following equation:

        (5)

This is the linearized FW-H equation. 

We see that in the limit of small perturbation, the eq. (4) of Zinoviev and Bies 
is equivalent to the linearized Curle formula when the surface S is not in 
motion, and to the solution of the linearized FW-H equation when it is in 
motion with small amplitude. We note that these are really the well-known 
properties of the Kirchhoff formula in acoustics which is less general than the 
Curle formula and the solution of the FW-H equation. 

2.0  Analysis of The Two Examples in The Paper

The two examples at the end of the paper are from linear acoustics. Zinoviev 
and Bies claim that even in these simple examples, the Curle’s formula fails 
to give the correct results available in acoustics books. Furthermore, they 
claim their eq. (4) gives the correct results. The Curle formula should be 
applicable only to an example for which the surface S is rigid and stationary. 
Example 1 of the paper satisfies this condition. However, as we demonstrate 
below, the authors have made some errors in manipulating the integrals of the 
Curle formula and erroneously blame the Curle formula for failing to give the 
correct result. We show below that Example 2 is in fact the determination of 
the radiation field of an oscillating sphere. Because in this example we have 

, the solution of the FW-H equation, or the linearized FW-H 

equation, should be used and not the Curle formula. It is not therefore sur-
prising that the Curle formula should fail in this case although the authors 
again make some errors in manipulating the integrals of this formula. This 
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discussion explains why the authors’ eq. (4) works for both examples. The 
conclusion of the authors about the Curle formula not giving the correct 
result for the first example is incorrect. Their conclusion about the failure of 
the Curle formula for the second example is correct although it is based on 
their erroneous result when they use the Curle formula.    

2.1  Example 1- Scattering of a Plane Wave by a Rigid Sphere

In this example, a plane wave with the wave number vector  is inci-

dent on a rigid sphere of radius  with the center at the origin of the -

frame. The unit vector along the x1-axis is denoted as . The incident wave 

is approaching the sphere from the direction of negative x1-axis with analytic 
expression

       (6)

where  is the velocity amplitude and  is the complex amplitude of the 

incident wave. Before we get down to the algebraic manipulations, we dis-
cuss a subtle point about the application of the Curle formula here. Because 

we are working with linear acoustics, we replace  everywhere by the 

acoustic pressure .

The Curle formula is valid for volume sources in the finite region and it is 
assumed that only outgoing waves exist in the problem. However, a plane 
wave approaching the sphere is radiated from a source at infinity and thus, 
strictly speaking, the Curle formula should not be used for this example. 
There is a way to handle this problem rigorously as follows. We assume that 
there is a monopole source on the negative x1-axis very far from the origin of 

such an strength that near the origin the acoustic pressure from this source 
closely approximates the incidence wave of eq. (6). The governing wave 
equation which results in Curle’s formula for this situation is:

        (7)
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where  is the monopole source strength located at  on the 

negative x1-axis very far from the origin. We note that  is the solution of 

the following wave equation by assumption:

        (8) 

Now using the relation  in eq. (7) and then utilizing the 

relation of eq. (8), we get the following important result:

      (9)

Therefore, the Curle formula for this example is the solution of the above 
equation: 

       (10)

where  is the source time and  is the angle between , the outward unit 

normal to , and the radiation direction . In the far field and in terms of 
complex amplitudes, the Curle’s formula can be written as follows from eq. 
(10):

        (11)

We now introduce spherical polar coordinates with the polar axis as the posi-
tive x1-axis. We avoid subscripted variables of Zinoviev and Bies by defining 

the spherical polar variables of the observer variable by  and 

source variable by . 

With the assumption of , we have [4]:
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       (12)

The cosine of the angle between  and the radiation direction is given by

   (13)

and the element of the surface area of the sphere is given by

         (14)

We now approximate the radiation distance using the cosine rule for a trian-
gle assuming that . This gives us 

    (15)

       (16)

Using eqs. (12) to (16) in the right side of the Curle formula, eq. (11), we 
must integrate the following fairly complicated integral:

   (17)

where the constant . The above integral can be easily 

integrated by Mathematica 5.0 and the result is:

      (18)

Substituting for A from above in this equation, the Curle formula, eq. (11) 
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       (19)

This is the correct result for the scattered pressure (see [4], page 427, eq. (9-
1.8). Therefore, the Curle formula gives the correct result for this example.

In reading the paper of Zinoviev and Bies one does not see a result equivalent 
to our eq. (11) and the discussion leading to this result. Furthermore, they do 
not take the divergence of the integral on the right side of their eq. (37) ana-
lytically which is a trivial matter. Finally, they have made several errors in the 
evaluation of the integral based on the Curle formula.

2.2  Example 2- Sound Generation by a Rigid Sphere in a Variable 
velocity Field

The origin of this problem as discussed by the authors is somewhat confus-
ing. Studying the surface pressure data used by the authors, we find that this 
example is on the determination of the radiation field of a rigid sphere oscil-
lating with the velocity amplitude  along the x-axis (see [6], page 284, 

Problem 1). In fact, the surface of the sphere can not be stationary because 
the momentum equation dictates that  which is not what the 
authors assume (see eq. (57), Zinoviev and Bies). In this case, as we have 
shown above the Curle formula is not applicable but either the authors’ eq. 
(4) or the solution of the linearized FW-H equation, our eq. (5), gives the cor-
rect result. We mention that the solution of the linearized FW-H equation is in 
fact the Kirchhoff formula [7]. We have integrated the integrals of the radia-
tion formula for this example using Mathematica 5.0 proving the correctness 
of our assertion in agreement with the authors. We will not present the results 
here. As mentioned earlier, the evaluation of the integrals of the Curle for-
mula for this example is also in error in the paper.

3.0  Other Comments on This Paper

1- The manipulations for converting the derivatives with respect to the source 
variable of the Lighthill stress tensor to derivatives with respect to the 
observer variable are not necessary. If  is the solution of the wave equa-

tion 
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        (20)

Then, taking  of both sides of this equation, we find that 

 is the solution of 

       (21)

Since  is given as an integral by the solution of eq. (20), then the partial 

derivatives with respect to the observer variables in  will be 

outside the integral sign. 

2. Most of the algebraic manipulations involving integration by parts in the 
paper are confusing and not mathematically precise because the authors do 
not clearly indicate evaluation of the integrand at the retarded time. For 
example, in the integrand of the integral on the left of eq. (5) of Zinoviev and 
Bies, the correct interpretation of the term involving the Lighthill stress ten-

sor is . This means that in the algebraic manipulations 

leading to the right side of eq. (5), one must take account of the retarded time 
variable as follows

                                                                                                            (22)

When the correct manipulations are performed, it can be shown that the right 
side of eq. (5) can be obtained with the retarded time correctly indicated. We 
have left out several steps here to get eq. (5) but they should be given to 
assure correctness of the final result. This remark applies also to other results 
involving integration by parts in the paper. The method selected by the 
authors for manipulating the integrals is complicated and prone to errors. A 
better approach will be working directly with the source terms of the wave 
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equation, e.g., as in deriving the solution of our eq. (21), or working with the 
formal solution of the wave equation involving the Green’s function before 
integrating the two delta functions in the integrand.

3. In the Subsection 3.3 Formulation of the divergence theorem, it is not at all 
clear what the authors mean by the discontinuity of the functions  on the 

boundary . The proper mathematical tool to study this problem is general-

ized functions [8, 9]. The author of this letter has studied this problem in 
detail [10] and is unable to comprehend what the authors are implying in the 
paper. Also in differential geometry, the surface divergence has a clearly 
defined meaning [11, page 187]. The authors’ definition does not correspond 
to this definition.

4. We are dismayed that the authors have neglected to do a detailed literature 
review of aeroacoustics before presenting their work to the public. The litera-
ture of acoustics on the subject of this paper is very extensive. The current 
state of the theoretical aeroacoustics is considerably more advanced than 
what is presented by these authors [12]. 

In summary, we have shown that the authors’ improvement of the Curle for-
mula is nothing more than the linear Kirchhoff formula for the density pertur-
bations, added to the free-field solution of the nonlinear Lighthill’s equation. 
As a general statement the authors’ result is incorrect, although it reduces to 
the solution of the Ffowcs Williams-hawkings equation in the restricted con-
text of linear acoustics. The derivation of the Curle formula for fixed surfaces 
[2] and the FW-H equation for moving surfaces [3], in contrast, are quite gen-
eral and rest on solid physical and mathematical foundation.
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